Multiscale Agent-based Model of Tumor Angiogenesis
نویسندگان
چکیده
Computational models of cancer complement the biological study of tumor growth. However, existing modeling approaches can be both inefficient and inaccurate due to the difficulties of representing the complex interactions between cells and tissues. We present a three-dimensional multiscale agent-based model of tumor growth with angiogenesis. The model is designed to easily adapt to various cancer types, although we focus on breast cancer. It includes cellular (genetic control), tissue (cells, blood vessels, angiogenesis), and molecular (VEGF, diffusion) levels of representation. Unlike in most cancer models, both normally functioning tissue cells and tumor cells are included in the model. Tumors grow following the expected spheroid cluster pattern, with growth limited by available oxygen. Angiogenesis, the process by which tumors may encourage new vessel growth for nutrient diffusion, is modeled with a new discrete approach that we propose will decrease computational cost. Our results show that despite proposing these new abstractions, we see similar results to previously accepted angiogenesis models. This may indicate that a more discrete approach should be considered by modelers in the future.
منابع مشابه
Modelling Tumor-induced Angiogenesis: Combination of Stochastic Sprout Spacing and Sprout Progression
Background: Angiogenesis initiated by cancerous cells is the process by which new blood vessels are formed to enhance oxygenation and growth of tumor. Objective: In this paper, we present a new multiscale mathematical model for the formation of a vascular network in tumor angiogenesis process. Methods: Our model couples an improved sprout spacing model as a stochastic mathematical model of spro...
متن کاملTwo Dimensional Mathematical Model of Tumor Angiogenesis: Coupling of Avascular Growth and Vascularization
Introduction As a tumor grows, the demand for oxygen and nutrients increases and it grows further if acquires the ability to induce angiogenesis. In this study, we aimed to present a two-dimensional continuous mathematical model for avascular tumor growth, coupled with a discrete model of angiogenesis. Materials and Methods In the avascular growth model, tumor is considered as a single mass, wh...
متن کاملIntegration of Angiogenesis Modules at Multiple Scales: From Molecular to Tissue
Multiscale modeling has emerged as a powerful approach to interpret and capitalize on the biological complexity underlying blood vessel growth. We present a multiscale model of angiogenesis that heralds the start of a large scale initiative to integrate related biological models. The goal of the integrative project is to better understand underlying biological mechanisms from the molecular leve...
متن کاملSimulating cancer growth with multiscale agent-based modeling.
There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspe...
متن کاملHybrid multiscale modeling and prediction of cancer cell behavior
BACKGROUND Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. METHODS In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013